skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Purui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Underwater backscatter is a promising technology for ultra-lowpower underwater networking, but existing systems break down in mobile scenarios. This paper presents EchoRider, the first system to enable reliable underwater backscatter networking under mobility. EchoRider introduces three key components. First, it incorporates a robust and energy-efficient downlink architecture that uses chirp-modulated transmissions at the reader and a sub-Nyquist chirp decoder on backscatter nodes—bringing the resilience of LoRa-style signaling to underwater backscatter while remaining ultra-lowpower. Second, it introduces a NACK-based full-duplex retransmission protocol, enabling efficient, reliable packet delivery. Third, it implements a Doppler-resilient uplink decoding pipeline that includes adaptive equalization, polar coding, and dynamic retraining to combat channel variation. We built a full EchoRider prototype and evaluated it across over 1,200 real-world mobile experiments. EchoRider improves bit error rate by over 125× compared to a state-of-the-art baseline and maintains underwater goodput of 0.8 kbps at speeds up to 2.91 knots. In contrast, the baseline fails at speeds as low as 0.17 knots. Finally, we demonstrate EchoRider in end-to-end deployments involving mobile drones and sensor nodes, showing its effectiveness in practical underwater networked applications. 
    more » « less
    Free, publicly-accessible full text available August 27, 2026
  2. We present the design, implementation, and evaluation of Van Atta Acoustic Backscatter (VAB), a technology that enables long-range, ultra-low-power networking in underwater environments. At the core of VAB is a novel, scalable underwater backscatter architecture that bridges recent advances in RF backscatter (Van Atta architectures) with ultra-low-power underwater acoustic networks. Our design introduces multiple innovations across the networking stack, which enable it to overcome unique challenges that arise from the electro-mechanical properties of underwater backscatter and the challenging nature of low-power underwater acoustic channels. We implemented our design in an end-to-end system, and evaluated it in over 1,500 real-world experimental trials in a river and the ocean. Our evaluation in stationary setups demonstrates that VAB achieves a communication range that exceeds 300m in round trip backscatter across orientations (at BER of 10−3). We compared our design head-to-head with past state-of-the-art systems, demonstrating a 15× improvement in communication range at the same throughput and power. By realizing hundreds of meters of range in underwater backscatter, this paper presents the first practical system capable of coastal monitoring applications. Finally, our evaluation represents the first experimental validation of underwater backscatter in the ocean. 
    more » « less